The Current National Grid

    Energy Management

History of the Grid

Britain had the beginnings of its national grid system in 1937, when a group of engineers connected a series of smaller electrical regional grids, in an effort to increase supply security and reduce overall electrical cost. This was to form the basis of the national grid, which we have relied on ever since to provide us with electricity as and when we need it.

However this National Grid was created when energy was relatively inexpensive to generate. This meant that reliability was ensured through the production of excess capacity.

The limitations of the current national grid

As we have mentioned previously, the current grid has its limitations. First of all, it is an ageing infrastructure that is creaking and straining under the weight of the current electrical needs of the country. In the sections below we are going to examine some of the issues that the national grid currently faces:

Electricity supply and demand

Previously, as demand increased, so did capacity – simply, a new power plant was installed. Over time though, the cost of installing new capacity has risen dramatically, as has the cost of the fuel used to power it. Nowadays, more and more of our daily activities rely on electricity. This has led, in spite of improved energy efficiency in many appliances, to a sharp rise in the amount of electricity we consume, pushing up our peak demand to unprecedented levels.

This has put the current electrical grid in an interesting position. Energy demand has increased over time; however new capacity has not been installed at the same rate, so the amount of headroom (the difference between peak supply and peak demand) has been dramatically reduced. This has resulted in the need to fire up older, highly inefficient power stations just to meet current demand. Unless new plans are put into place, things will only get even stickier in the years to come.

Electricity transmission

The active process of getting electricity from where it is generated to where it is needed is actually a fairly simple process. However, as the demand for electricity has increased, the Grid has been forced to handle huge amounts of electricity that has to be transmitted great distances from its source to where it is required. This is a highly inefficient process, with large amounts of electricity being lost due to lengthy supply lines and basic transmission intelligence.

Increase in renewables

The UK used to rely on a centralised core of fossil fuel and nuclear power plants running up and down the spine of the country to provide itself with power. However, as these power plants have aged, many have closed down, and a new EU carbon reduction directive has meant that many more are due to close in the near future.

The Grid has had to replace this lost capacity by installing new power plants. Since the turn of the century, this new capacity has largely been in the form of combined-cycle gas turbines and renewables.

The major issues with gas is that we need to import it and although it is cleaner than coal, it still produces harmful emissions when burnt. The major issue with renewable energy is that it is intermittent; if the wind isn’t blowing, no power is produced from wind turbines. This makes integrating renewables into an ageing and inflexible grid much more difficult, since energy storage will have to be bought into play. This further complicates the energy picture in the UK.

Reliance on imported fuels

As previously mentioned, many of the UK’s ageing fossil-fuelled power plants are shutting down, however new combined cycle gas turbine plants are still popping up. One of the fundamental issues that we face is energy security. As things stand, the UK is incredibly reliant on gas, especially when it comes to heating homes. This was partly the result of North Sea gas, which we assumed would never run out! The problem is that unfortunately it has; so we import the majority of our gas from Qatar and Norway.

So ultimately, the ability to heat our homes does not sit with the UK energy companies; instead we rely on the Middle East where much of our gas is sourced from – one of the most politically volatile places on earth. We have already seen massive price fluctuations, and it’s pretty worrying to be absolutely at the mercy of these countries.

Centralised energy production

The centralised method with which Britain powered the National Grid is fast becoming outdated. Previously, hundreds of fossil fuel power plants would stretch up and down the centre of the country, supplying the nation with electricity. However, with the increase in solar panels and wind turbines comes the massive increase in micro generation. This is decentralising a grid designed to run via centralised means.

Increased cost of production

Not only is demand increasing, but also generation is becoming progressively expensive to expand. You may have read the recent nuclear power plant go-ahead and wondered why energy production has become quite such an expensive business. The simple fact of the matter is, that while the current grid system remains, prices of generation will continue to rise and these increases will be passed onto the consumers. Nuclear power is pricey, importing fossil fuels is expensive and renewable energy can not yet be relied upon.

So what can we do?

Obviously, peak supply falling below peak demand would cause serious issues, the concept of rolling blackouts has fortunately not been something most of us have come across in our lifetime. However these are a real possibility in the years to come unless we act now – so what exactly can we do?

Obviously the best thing to do here is to use less electricity and energy, by generally being more energy efficient. This means that, without placing constraints on what you can do, you use less energy in everyday tasks.

Increasing the electricity generating capacity is probably the most expensive of the options. This is highlighted by the US Government having calculated that it costs about 3x as much to roll out new capacity, compared to reducing demand through energy efficiency.

The final option available is to be wiser when using energy– now this doesn’t necessarily mean energy efficiency. Instead it is looking at ways to remove the peaks in our energy demand to allow a lower installed electricity generating capacity to meet our energy requirements.

    Liquid Air Storage

    Future Ideas

What is Liquid Air Energy Storage?

Liquid Air Energy Storage (LAES) is a form of storing excess energy just as CAES (Compressed Air Energy Storage) or other battery storage systems. The system is based on separating carbon dioxide and water vapour from the air to produce a higher concentration of nitrogen. This nitrogen can then be liquefied for storage and expanded back to a gas when we need to make electricity. Liquid nitrogen is a commonly used substance in current industrial processes and can be stored and transported in large volumes at atmospheric pressure. This is different to the CAES process, which requires high-pressure storage chambers. Liquid nitrogen is also a good substance because it has a high expansion rate. In fact, it expands 700 times in volume when turning back into a gas from a liquid.

The LAES form of storage works well with intermittent power sources like wind and solar power, because the additional electricity created can be used to help filter the air into nitrogen, and then turn it into a liquid form. The electricity is recreated when the liquid is expanded to turn into its gas form.

How does the Liquid Air Storage process actually work?

The process depends on using liquefied air or liquid nitrogen (78% of air), which can be stored in large volumes at atmospheric pressure. The air is taken through an inlet and then into a compressor. On entering the compressor air is made up of a percentage of oxygen, water vapour, carbon dioxide and mostly nitrogen. When too much electricity is generated, the excess electricity is used to power the compressor and the chilling unit. Here the nitrogen component is separated and further cooled so it forms into a liquid, at precisely -196°C. The liquid nitrogen is then stored in a chilled vacuum until it is needed to drive power recovery. If there is a peak in demand or if the grid is struggling to meet demand, the liquid nitrogen can help with this. Then first step is to transfer the liquid into an ambient temperature chamber, usually into a heat exchanger. Since liquid air boils at -196°C, any small change to ambient temperature will superheat it. This creates expansion as the liquid once again becomes a gas. The expanding steam then drives a turbine (cryogenic engine), which drives the standard electric generator. Upon creating the electricity, it can then be reconnected and integrated back into the grid.

Can Liquid Air Storage energy be a commercially viable solution?

According to the Institute for Mechanical Engineers (IMechE), the process is anywhere between 25% and 70% efficient. This means that up to 70% of the electricity can be recreated from the cryogenic air compression process explained above. The process becomes more efficient if the cryogenic chambers, air vacuums and generator are located near a factory or an existing power station. This is because excess heat is usually vented, but it can be used efficiently in the LAES process. However despite a possible 70% efficiency, it is worth noting that batteries have an efficiency of 80%. Therefore, to be commercially viable, a cryogenic LAES plant needs to be able to achieve even more efficiency. Ideally the cryogenic LAES plant should also be located close to an intermittent renewable source of energy such as solar PVwind power or marine energy, so that it can minimise the electricity and heat loss during the transmission process.

How can Liquid Air Energy Storage combat volatilities in electricity demand?

The main challenge we all have is how to deal with erratic demand for electricity and somewhat intermittent supply from non-traditional sources like wind, solar and marine energy. One of the answers could be to use a solution like LEAS to store energy when it is plentiful and then use the storage to convert it back to electricity to meet demand. Therefore current power grids need to be upgraded so they are able to work smarter in order that energy can be provided when it is needed. Many argue that wind, solar and marine energy generation are tied to local environmental conditions, and there is no point transporting this energy around the country via the grid because much of it is lost through the transformation process. Therefore having LAES solutions sitting alongside more responsive local grids is something that should also be considered rather than just applying storage to an already inefficient national grid.

How does Liquid Air Storage compare to Compressed Air Energy Storage?

The energy density of cryogenically frozen fluids, such as liquid nitrogen compares very well against current alternatives such as compressed air, mainly because it can be used and transported under atmospheric pressure. Compressed air needs to be stored in special pressurised tanks, which are liable to leaks. Also compressed air requires special storage space underground, like mining shafts, which are limited in availability.

Liquid Air Energy Storage and the UK

Cooling air using a cryogenic process to create liquid nitrogen is not new, but the current efficiency levels are low because of the energy required to produce the storage fuel, and then again to create electricity. Highview Power in Buckinghamshire operate a heat recover and energy storage system with this process at 25% efficiency. They could increase this efficiency to 70% if they were located next to a conventional power station where excess heat could be recycled. The DECC is currently looking at additional measures the boost research and development in this area, and it has recently announced that it is soon to launch a scheme to get more companies involved. This will be in addition to the grants available through OFGEM.

    Chemical Storage

    Future Ideas

What is chemical energy storage?

An example of chemical energy storage is the common battery. By using the liquid inside it to store electricity it can then release it as required. Large batteries can act as chemical energy storage for industry and could make future energy generation solutions more efficient and profitable. This will be achieved by storing energy generated when demand on the grid is low and releasing this as required to help meet peak demand.

How does the battery chemical energy storage process actually work?

Batteries are portable devices that can be used in many different areas. The way a battery works is very simple and based on three components:

The anode and the cathode are also known as ‘terminals’ and are made of a metal, which are then separated by the electrolyte.

Converting stored energy to electricity

If you take a device like a light bulb or a simple electrical circuit and connect it to the battery terminals, the chemical on the anode causes a release of electrons to the negative pole and ions in the electrolyte. This is the chemical oxidation reaction.

On the positive pole the cathode accepts the flow of electrons, which completes the circuit for the flow of electrons. These two reactions happen simultaneously: the ions transport current through the electrolyte while the electrons flow in the external circuit. This then generates the electric current.

Storing electrical energy in a chemical store

The process for battery energy storage works in reverse, transforming electrical energy into chemical energy. When excess electricity is produced in the grid, it can be channelled into a battery system, and then be stored in the chemical system.

The mobile phone and electric car both take advantage of a rechargeable battery system. The hope is that in the future this process could be ‘up-scaled’: when electricity is produced by intermittent renewable sources like wind or a solar PV it can be stored in big industrial sized battery systems.

What types of batteries can be used for mass energy storage?

There are a number of different battery solutions that are currently being used in industry and under consideration for mass scale national grid use. This section briefly considers each type for these ambitious future requirements.

Lithium-ion Batteries

Lithium-ion batteries are the fastest growing battery type in the consumer market today. They have many uses, including powering laptops, mobile phones and hybrid vehicles due to the high amount of energy they can store. They also have high energy-efficiency, operate well under a wide range of temperatures, can be recycled and also have a low level of self-discharge.

However to be used as a grid storage solution this type of battery will require some refinement. They will need to operate with improved lifespan (number of charging and discharging cycles that can be achieved) and improved safety. Most importantly the cost to produce the lithium-ion batteries needs to come down – a storage solution these days needs to be cost effective.

Lithium-ion polymer batteries

Like the lithium-ion battery, the lithium-ion polymer batteries not only have a high-energy output, but also have a good safety record and a longer life span. However these are also uneconomical to produce, so the production costs would need to come down to make these viable as the mass-produced storage solution.

Lead-acid Batteries

Lead-acid batteries can be designed to power large applications and are relatively cheap, safe, and reliable. They are already being used in large storage and uninterrupted power supply solutions (e.g. emergency lighting and powering back-up generators), which means they can be increased further in size to power grids.  They can also be easily recycled and an infrastructure around this process already exists.

The problem they have is that they are rather large, heavy and immobile. They also have poor cold temperature performance and a short life cycle.

Flow batteries

There are several characteristics of a flow battery system that will enable them to provide very high power and very high capacity on a grid type system. For example, unlike a conventional battery system, the energy output is independent of the energy storage capacity. While output depends on the fuel cell stack, the energy storage depends on the size of the electrolyte tanks and these are independent from one another. This operating capability is very useful when large current flows need to be transported to a national electricity grid system.

Energy output ratio to weight can be up to three times better than lead-acid batteries, but they do have lower energy efficiency.

At the moment, there are only experimental flow battery schemes in operation and, since they haven’t been around as long as the lithium ion battery, it is taking longer for electricity distribution industries to adopt them.

Sodium sulphur

A sodium–sulphur battery is a type of molten-salt battery constructed from liquid sodium and sulphur. The sodium-sulphur battery has a very high energy and power density as a result of sodium being a highly reactive alkali metal. This type of battery has a high energy density, high efficiency of charge/discharge (89–92%) and long cycle life, and is fabricated from inexpensive materials.

However, they operate at a temperature of about 300-3500C, and therefore they require energy to keep them operational. And, due to the highly corrosive nature of sodium polysulphides, such cells must be kept stationary. Therefore they are ideal for for energy arbitrage, which is when the grid system fluctuates between peak demand and supply, so the battery can help manage the load.

Could chemical energy storage be a commercially viable solution?

We are still far from producing batteries that are a viable and cost-effective solution to managing the variation in grid systems. It would be incredibly expensive to make batteries capable of storing excess energy on the grid. So if this energy storage solution was implemented it may significantly increase the cost of electricity to consumers, which would be highly unpopular in the current economic climate.

People use electricity around the clock, so electricity transmission and storage must be kept in mind as key players.  Smart grids will require advanced utility-scale batteries to store electricity so it can be delivered when needed.

How does chemical energy storage compare to other storage technologies?

In the UK, the DECC has been running a programme funded by public money that looks at various energy-storage solutions that could be used in the national grid. At the moment there is no obvious solution as everything from compressed air storage to molten salt and battery power is being considered.

The UK does have pumped storage (hydroelectric), but not on a scale seen in countries like Norway and Canada, which make use of their natural topography.

    Hydrogen Storage

    Future Ideas

What is hydrogen?

Hydrogen is the most abundant element in the universe but naturally occurring hydrogen on earth is rare. This is because it is highly reactive, and so it reacts with most elements to form compounds that we see around us today. Hydrogen is found in pretty much all the food we eat, in fossil fuels to power our cars and also in water, which is made up of two hydrogen atoms combined with one oxygen atom.

If hydrogen is isolated and ignited with a flame in air, it will combust fiercely and produce heat and water as a by-product. There are already cars that run solely on hydrogen, which means that these cars are 100% emission free. So hydrogen is abundant and combusts with zero dangerous emissions, which makes it a perfect candidate for energy storage.

How can hydrogen combat volatilities in electricity demand?

Many countries have electricity demand volatilities, where a large amount of electricity is needed at rush hour, and again when people come home and use appliances during the evening. Conversely, while people are asleep at night, demand is much lower. This is a rather simplistic model, but it demonstrates the electricity demands of the modern world.

Unfortunately electricity cannot be stored, and at the moment most is either used or wasted as it is produced. However, if we intervene correctly we can transfer the excess electricity into another form of potential energy such as hydrogen. It can then be used to create electricity when required, thereby reducing the volatility of demand on the grid.

Producing hydrogen for grid storage

The main commercial process used for creating pure hydrogen is steam reforming, which involves breaking down a hydrocarbon into hydrogen and carbon monoxide.

However, as an energy storage measure for the grid, the most suitable method of creating hydrogen is through a process called electrolysis, which is simply using electricity and water. Importantly, hydrogen can be produced using electricity sourced from renewable sources such as wind and solar. Therefore when there is excess supply capacity, such as during the night when demand is also low, this excess electricity can be used to produce the hydrogen.

The process of the electrolysis of water involves passing an electrical current through water, which then produces pure hydrogen gas and oxygen. Two electrodes are positioned in the water, and when an electrical current is passed down the cathode (the negatively charged electrode) hydrogen bubbles out, while at the anode (the positively charged electrode) oxygen is released.

Another potential mechanism for making hydrogen is using algae or cyanobacteria, which use the sun to split water into hydrogen and oxygen. Under normal conditions, however, hydrogen production is secondary to the production of compounds that the organisms use to support their growth. However specialised enzymes can be introduced to suppress sugar production in the organism so it produces much more hydrogen gas. This research is still at an early stage, but the paper that describes the process can be found here.

What do we do with the hydrogen sas produced?

This hydrogen gas can then be stored and used in a fuel cell to create electricity (or it can be burnt to power a traditional turbine/ generator system). In a fuel cell, the hydrogen is combined with oxygen to create electricity without producing any heat. There are several advantages of producing electricity with a fuel cell rather than combusting the hydrogen. The fuel cell operates very efficiently, is very reliable and the only by-product is water – an obvious environmental bonus.

The future for hydrogen mass storage

The future seems bright for hydrogen as a mass storage technique. The ability to create hydrogen by applying an electric current to water when there is excess supply in the grid is a very simple process. ITM Power, based in the UK, are currently building an infrastructure to create hydrogen on a large scale by using electrolysis to power industry and road vehicles.

The electrolysis units are then positioned where the gas is required. This removes the cost of implementing the infrastructure required to pump the hydrogen between locations, or to carry the hydrogen gas in lorries.

The test units they currently have in operation create 5kg of hydrogen gas over a 24-hour timeframe. It takes roughly 60kWh of electricity to produce 1kg of hydrogen and that would cost about £7.20 at today’s electricity prices. If this was used in car it would work out at about £0.12 / mile, where as a traditional petrochemical engine would work out at about £0.18 / mile.

However if the electricity required to make the hydrogen was sourced 100% from renewable technologies, then the whole process would be 100% emission free.

The major issue with hydrogen gas

Whilst hydrogen does sound like a genuine mass storage contender, there is one main issue with it, which is storage. It is difficult to store because it has very low volumetric energy density. It is 3.2 times less dense than natural gas and 2,700 times less dense than gasoline. Therefore to store it, it needs to be compressed, liquefied or chemically combined prior to storing. A standard method to do this on a large scale needs to be formalised to ensure that it becomes economical to store the hydrogen.

Could hydrogen be the answer to grid energy storage

In a word, yes! Producing hydrogen can be done now and hydrogen has a very high specific energy (energy per unit mass). However the mechanism for producing the gas has to be standardised so economies of scale are introduced into its production, helping to bring the cost of production down.

The major drawback with hydrogen is that it takes up such a large space when it is stored. Therefore new, more effective storage processes will need to be introduced, to make its storage economically viable. Rather than turning off wind turbines to prevent excess electricity going into the grid, hydrogen storage in fuel cells is an excellent way to conserve energy.

    Compressed Air Energy Storage

    Future Ideas

What is compressed air energy storage?

The purpose of compressed air energy storage is to help manage the supply of electricity in the grid. For example when the wind blows a wind turbine will produce power, but this power may be produced when there is no demand for it. At this time it becomes necessary for us to be able to store the electricity, so we can use it when there is a peak in demand. Compressed air energy storage is the second biggest form of energy storage currently behind pumped storage.

Compressed air energy storage involves converting electrical energy into high-pressure compressed air that can be released at a later time to drive a turbine generator to produce electricity. This means it can work along side technologies such as wind turbines to provide and store electricity 24/7. Ideally the compressed air is stored in an existing geographical formation such as a disused hard-rock or salt mine (keeps cost down), rather than producing specialist surface piping, which can be expensive.

How does compressed air energy storage work?

The first compressed air energy storage facility was the E.ON-Kraftwerk’s

290MW plant built in Huntorf, Germany in 1978. This plant was built to help manage grid loads, by storing the electricity as pressurised air when demand was low during the night. When there was peak demand, the compressed air was released to create the electricity, in an effort to lower peak electricity costs.

This plant, which is still maintained as a power back-up installation today, compresses air during times of low demand and stores it in two underground salt caverns. It takes 8 hours to fill both of the caverns at a rate of 108 kg / sec. When electricity is needed, the compressed air is released and heated by combusting natural gas to get the air to expand. This drives a 320MW turbine producing electricity for 2 hours, before the caverns need to be refilled.

Most other compressed air energy storage plants operate along the same principle, although to increase efficiency they are more focussed on retaining the heat associated with compression, which is discussed below.

Increasing the efficiency of compressed air energy storage

One of the major issues with compressed air energy storage is that when you compress air it heats up.  When the electricity is required it needs to be expanded, which requires heat. In addition the cooler the air, the more you can store. Companies are therefore trying to find ways to best store the heat generated during compression, so it can then be used to heat the air for the expansion helping drive more efficiency in the overall process.

There are three types of solutions that can deal with heat build up when the air is initially compressed and are discussed below:

New technology is being developed by companies to try and increase the heat retained from the compression process. For example, SustainX from the USA have working on a process to remove the heat by injecting water vapour into the compressed air. The water absorbs the heat which then gets stored and reapplied to the air during the expansion process.

Keeping the pressure up

One of the final issues to overcome for successful CAES revolves around the pressure of the compressed air as it comes out. If the storage facility is full of compressed air, the cavern pressure is higher. Visa versa if cavern is almost empty then the cavern pressure will be low.  Therefore there are two operating modes when storing compressed air in a fixed volume cavern, which are demonstrated in detail below:

The latter option is normally used, despite ‘throttling loses’ (the speed at which the air is released from the cavern). This is so there is always a constant store of air driving the turbine, so you can accurately reflect the amount of electricity that the compressed air energy storage facility will be producing.

The future of compressed air energy storage

In the UK, Seamus Garvey, a professor of Dynamics at Nottingham University, is looking at using deep ocean bags known as ‘energy bags’ to fulfil the role of the natural cavities that are used at the moment. The deep water acts as the pressure vessel, and no matter how full the energy bags are, energy should always be the same. In terms of energy storage, Garvey says that with this proposed technology the cost per unit of energy stored is in the order of £1-£10 / kWh, where as comparators such as pumped storage come in at £50 / kWh and electrochemical stores are about £500 / kWh, therefore make this solution very attractive.

It is expected that the UK will need to be able to store about 200GWh of electricity by 2020, to help support the grid that becomes more dependant on intermittent renewable energy sources. Compressed air energy storage could be a valuable tool in allowing us to hit these ambitious targets.

    Extended Range Electric Cars (E-REV) – Doing away with range anxiety

    May 17, 2012

[Update: This blog was written in 2012. Since then, electric cars have evolved a lot; most now have ranges of between 150-300 miles. Read about recent models below.]

Range Anxiety – Major Problem With Electric Cars –

Extended Range Electric Vehicles (E-REV) vehicles could be set to do away with Electric Car ‘Range Anxiety’.

One of the major issues people foresee with electric cars is that they have limited range. Despite more than 80% of journeys being less than 20 miles, people still feel anxious about driving a car with a maximum range of less than 100 miles.

Extended Range Electric Vehicle

Battery density is improving all the time, so the charge they can hold is increasing giving extended range. In addition, automotive companies are coming up with more ingenious ways of spreading the battery packs in the cars thereby maximising the volume of battery which also increases the range. In fact the Tesla Model S comes in three types with it’s entry range model rated at 160 miles (further models are available that are good for 230 & 300 miles on a full charge).

What Are E-REVs?

However numerous cars are looking to get away with range anxiety all together, including so called ‘range extenders’. The premise is simple, the majority of journeys are 20 miles or less, so the electric engine has a range of 25 miles, after this point a small petrol engine takes over to give you the additional range bringing it in line with most ICE engines today.

This is not a hybrid!! Hybrid’s alternate between battery and petrochemical fuel at any given moment, depending on speed, and battery charge. These ‘range anxiety’ beaters are known as extended range electric vehicles (E-REV), and they will exhaust their electrical charge completely before reverting to the combustion engine.

There is also a mode that allows you to force it to use the range extender prior to using the electrical charge. This is to allow you to save you electrical charge for when you are driving through zero-emission zones (which London could well become in the not-to-distant future).

Which cars offer E-REV technology in the UK?

Well there are three at the moment, the Vauxhall Ampera, the Chevrolet Volt and the Toyota Prius Plug in. The Chevrolet Volt and the Vauxhall Ampera are essentially the same car, but bought to market by different companies, as such you can go into a car showroom in the UK and buy either a volt or an Ampera.

Vauxhall Ampera (+ Chevrolet Volt) – This has an electric range of 25-50 miles when taking charge solely from the electric engine. A full charge takes 4 hours, costing about £1 (worth of electricity).

The Chevrolet Volt Extended Range Electric Vehicle

When a driver goes beyond this range, the range extender kicks in; this is an 86bhp 1.4 litre Ecotec petrol engine. This engine does not power the wheels directly (like in a traditional combustion car), instead it acts as a generator for the electric propulsion system. The range extender gives the Ampera a total range of approximately 320 miles.

The Vauxhall Ampera has an on-the-road price of £32,745 (which includes the 5k Government Car Allowance) and will be available in the UK from May 2012.

The Chevrolet Volt has an on-the-road price of £29,995 (which includes the 5k Government Car Allowance) and will be available in the UK from May 2012.

Toyota Prius Plug in – This has an electric range of 15 miles when taking charge solely from the electric engine. A full charge takes only 1.5 hours, costing about 40 pence for the electricity used.

Prius Plug in Extended Range Electrical Vehicle

The difference here, is that you can choose to drive the Prius in Electric mode solely (hence the ability to charge it), however normally the Prius Plug in works as a typical hybrid, so alternating between electric propulsion and petrol engine propulsion. The Petrol engine in the Prius is a 1.8 litre, therefore packs a slightly bigger punch than the Ampera and Volt. The total range of the Prius Plug in 540 miles (electric and petrol combined).

The Toyota Prius Plug in has a starting price £32,895 (but is subject to the government’s £5k car allowance) and is expected to be available in the UK from Summer 2012.

    Imagine Life without Electricity

    May 2, 2012

Imagine life without electricity

Well, first off you wouldn’t be reading this; in fact the internet wouldn’t exist at all. Business systems would fail, emergency services would become futile, there would be limited transport, limited communication, and most of the modern conveniences that you take for granted would simply disappear.

Everything that makes life so straightforward (relatively!!) would simply not exist.

Fortunately as of May 2012, I have not really suffered from this problem; the odd power cut has resulted in reading by candlelight, but even that had a romantic charm to it.

With demand continuing to increase and supply not reacting fast enough to plug this energy gap the world is coming up with an ingenious way to help.

Development of the Electric Grid We Use Today

The electricity grid that we know and rely on today was first created in the 1890’s, when Nikola Tesla highlighted the advantages of using alternating current to transport electricity. Initially, in the early 20th century, the grid started out as lots of local grids but by the 1960’s these local grids had developed and become so interlinked that it appeared as if there was one massive grid in the UK, with thousands of power generating plants to produce the electricity needed.

At this time, the majority of power stations were gas, oil and coal powered, but as time went on and demand increased, nuclear power plants began to be built (near large sources of water required for cooling) along with large hydroelectric developments.

It was not until the end of the 20th Century that electricity demand patterns were established.

Electricity currently cannot be stored effectively unfortunately, and each type of power station takes time to switch on and off. Nuclear power is the slowest to turn on and off, so nowadays this provides a large percentage of the base electricity in the grid. However, electricity derived from gas turbines can be turned on and off relatively quickly, so this type of power generation was initially used to help mirror electricity demand.

Forward wind another 20 years or so to 2012

Admittedly we still rely on coal, gas and nuclear electricity to power most of the country, but there a number of other electricity sources that have since been added to the electricity mix (although these produce intermittent power when the sun is shining, when the wind is blowing etc). Demand in the UK has also continued to increase, and pressure is forever mounting to drive us get our electricity from cleaner sources. The final issue though, is that demand for electricity is due to outstrip supply as nuclear plants are decommissioned over the coming years and there is nothing (currently) in the pipeline to take up the slack.

So where does that leave us? Well not in great shape admittedly!! However all is not lost. We are holding an ace card, we have information. Lots of it. At the tip of our fingertips.

If I am out and about, I can now see how far my bus is from the bus stop. If I see a product in a shop, I can scan the barcode and check where in my local area I can get the same product at a cheaper price. I can use the internet to book a flight, do all of my shopping, video call my friends across the world. The internet has transformed the way we live, and it has only been about for the last 15 years or so (in the form that we know it now).

The Smart Grid

So we have increasing electricity demand as populations grow, business expands and people are living more energy intensive lives. There is also now more risk to the electric grid than ever before, it is getting old, it is more difficult to continue scaling it up, and it is under constant threat from terrorists.

The smart grid is the term used to describe the overhaul of the electric grid. Governments and businesses are investing lots of capital to make the grid more reactive to supply and demand, and this is being driven by 4 interrelated functions.

As I have mentioned previously we are moving away from the large centralized energy generating power plants to smaller distributed sources of renewable energy. This has both benefits and drawbacks. The major drawback is that the electricity from these sources tends to be made intermittently, so for solar PV, only when the sun shines, or for wind turbines when the wind blows. However, you can build these smaller power sources closer to where the electricity is needed, reducing the transmission losses associated with the older centralised plants, in fact houses across the globe are now creating their own electricity and selling it back to the grid (effectively acting as tiny power stations). In addition, the electricity produced from these sources is less polluting, which may help in some way our fight against global warming.

Monitoring has increased dramatically; it is not simply now that once a quarter your energy company reads your meter, sees that it has has clocked an additional 1000 kWh and sends out the bil. If advanced metering infrastructure is installed, these utility companies can get an instantaneous view of information including voltage profile (both maximum and minimum), instantaneous current, kWh used per day, the load profile etc. In addition the utility companies can get instant feedback on the health of their electricity transmission gear, for example transformers in sub-stations, so problems can be identified and rectified quicker than ever before.

In the early 1900’s, the energy grid appeared to be a series of local grids, and actually it appears that we may once again be headed back to that situation. It seems that our end goal is to see an increase in smaller electricity producing power plants that adapt to meet the needs to small local communities, and therefore we need better control than ever to match the supply and demand, known as micro grid control. It is almost as if the grid is now alive, underutilized components can be put to work, easing the stress of overworked parts of the grid, while it can easily adapt to incoming power fluctuations, outages and so forth.

Finally, we need standardised intelligent applications across all of these micro grids. With more information being delivered across the internet to suppliers, they have the ability to use this information to become more efficient in the way they supply electricity.

What Is Holding Mass Adoption Of The Smart Grid Back

As I mentioned previously at the beginning of this post, it is almost unthinkable to get by without electricity. The smart grid, despite working well on small scale tests areas is yet to be tested on a really grand scale, and unfortunately the people at the top are unwilling to work with ‘potentially’ life changing technology. Keeping the lights on is the key priority of all leaders in Government, and while at the moment that is the case, it may not be for that much longer.

Utility companies have based their revenue models on dated regulatory and rate-making frameworks, so they are in no way incentivised to adopt smart grid technologies.

The equipment to produce a large scale Smart grid is expensive; there are high upfront capital costs associated with building a smart grid, and despite there being massive potential efficiency savings so the technology would pay back quickly, companies are unwilling in this turbulent world economy to stick their neck out.

The final factor that I think holds back mass adoption of the smart grid is security. It is correct to assume that by implementing this technology we potentially could adapt to power outages resulting from terrorist action, by rerouting electricity from other areas. The security issue here is actually to do with the data; as we have seen over the last 10 years or so, the internet is a haven for worms and viruses that can bring down computer systems. Security needs to be at a sufficient level to ensure that the electric grid is not at risk, or at least the risk is managed, because as I have suggested earlier, I’d imagine the romance of reading by candle light would quickly fade!!

Why I Would Love To See the Implementation of The Smart Grid

1. A smart grid would act as an intelligent, self-healing grid that anticipates and prevents disruptions and dramatically reduces costly blackouts and power disturbances.

2. The smart Grid would also be much more economical, ensuring that supply accurately met demand, so no electricity is wasted (expensive), but there would always be a sufficient volume (to prevent outages). In addition the potential that the electricity you are using is being produced on your neighbour’s house means that transmission wastage will be limited.

3. Finally the smart grid would be cleaner, and it would be easy to bring on line more renewable energy sources that simply plugged into the grid. It would be a psyche change from big centralised polluting power stations, to small cleaner tech generating stations.

Pin It on Pinterest